Metabolic engineering of Rhodopseudomonas palustris for the obligate reduction of n-butyrate to n-butanol

نویسندگان

  • Devin F. R. Doud
  • Eric C. Holmes
  • Hanno Richter
  • Bastian Molitor
  • Georg Jander
  • Largus T. Angenent
چکیده

BACKGROUND Rhodopseudomonas palustris is a versatile microbe that encounters an innate redox imbalance while growing photoheterotrophically with reduced substrates. The resulting excess in reducing equivalents, together with ATP from photosynthesis, could be utilized to drive a wide range of bioconversions. The objective of this study was to genetically modify R. palustris to provide a pathway to reduce n-butyrate into n-butanol for maintaining redox balance. RESULTS Here, we constructed and expressed a plasmid-based pathway for n-butanol production from Clostridium acetobutylicum ATCC 824 in R. palustris. We maintained the environmental conditions in such a way that this pathway functioned as the obligate route to re-oxidize excess reducing equivalents, resulting in an innate selection pressure. The engineered strain of R. palustris grew under otherwise restrictive redox conditions and achieved concentrations of 1.5 mM n-butanol at a production rate of 0.03 g L-1 day-1 and a selectivity (i.e., products compared to the consumed substrate) of close to 40%. Since the theoretical maximum selectivity is 45%, the engineered strain converted close to its maximum selectivity. CONCLUSIONS The innate redox imbalance of R. palustris can be used to drive the reduction of n-butyrate into n-butanol after expression of a plasmid-based enzyme from a butanol-producing Clostridium strain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft genome sequence and overview of the purple non sulfur bacterium Rhodopseudomonas palustris 42OL.

Rhodopseudomonas palustris strain 42OL was isolated in 1973 from a sugar refinery waste treatment pond. The strain has been prevalently used for hydrogen production processes using a wide variety of waste-derived substrates, and cultured both indoors and outdoors, either freely suspended or immobilized. R. palustris 42OL was suitable for many other applications and capable of growing in very di...

متن کامل

Potential early intermediates in anaerobic benzoate degradation by Rhodopseudomonas palustris.

Alkali-treated extracts of Rhodopseudomonas palustris growing photosynthetically on benzoate were examined by gas chromatography/mass spectrometry for partially reduced benzoate derivatives. Two cyclic dienes, cyclohexa-2,5-diene-1-carboxylate and cyclohexa-1,4-diene-1-carboxylate, were detected. Either compound supported cell growth as effectively as benzoate. These results suggest that these ...

متن کامل

Reduction of Selenite to Red Elemental Selenium by Rhodopseudomonas palustris Strain N

The trace metal selenium is in demand for health supplements to human and animal nutrition. We studied the reduction of selenite (SeO₃⁻²) to red elemental selenium by Rhodopseudomonas palustris strain N. This strain was cultured in a medium containing SeO₃⁻² and the particles obtained from cultures were analyzed using transmission electron microscopy (TEM), energy dispersive microanalysis (EDX)...

متن کامل

Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal.

n-Butanol was produced continuously in a two-stage fermentor system with integrated product removal from a co-feed of n-butyric acid and glucose. Glucose was always required as a source of ATP and electrons for the conversion of n-butyrate to n-butanol and for biomass growth; for the latter it also served as a carbon source. The first stage generated metabolically active planktonic cells of Clo...

متن کامل

Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance.

The primary alcohol/aldehyde dehydrogenase (coded by the aad gene) is responsible for butanol formation in Clostridium acetobutylicum. We complemented the non-sporulating, non-solvent-producing C. acetobutylicum M5 strain (which has lost the pSOL1 megaplasmid containing aad and the acetone-formation genes) with aad expressed from the phosphotransbutyrylase promoter and restored butanol producti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017